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TECHNICAL NOTE 2665

AN EXTENSION OF LIFTING ROTOR THEORY TO COVER
OPERATION AT LARGE ANGLES OF ATTACK
AND HIGH INFLOW CONDITIONS

By Alfred Gessow and Almer D. Crim
SUMMARY

Analytical expressions are derived -for the flapping, the thrust,
the torque, and .the profile-drag power of a hinged rotor that are
applicable to high-speed helicopters and to certain types of convertible
ailrcraft. The development dtffers from that used in the standard rotor
theory in that no limitation is placed on the magnitude of the blade-
section inflow angles and differs also in the treatment of the reversed-
velocity region. The equations may be used to calculate the performance
of a lifting rotor -at any angle of attack either directly or, prefer-
ably, from charts.

INTRODUCTION

Present rotor theory (references 1 to 3, for example) has proved
to be entirely adequate for predicting the present-day performance of
autogiros and helicopters. With the envisioned doubling of the top
speed of present-day helicopters, however, and with the advent of con-
vertible aircraft, a review of the assumptions on which the standard
rotor theory is based was considered desirable in order to determine
the extent to which the theory could be applied to these improved con-
figurations. A review of the theory revealed that the premise that
rotor-blade-section inflow angles ¢ are small enough to allow the
usual small-angle assumptions that cos ¢ is equal to unity and sin ¢
is equal to ¢ would not apply to the inflow angles generated at the
rotors of high-speed, high-performance helicopters or to certain types
of convertible aircraft with rotors which operate through a 90° range
of angle of attack. Also, for helicopters operating at tip-speed ratios
close to 0.5, the high inflow angles (and section angles of attack)
usually associated with high-speed flight, together with the relatively
large area affected, make the contribution of the reversed-velocity
region much more significant than it is at the normally low values of
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tip-speed ratio. Consequently, an investigation was made to remove the
small-angle and reversed-velocity limitations from the present rotor
theory. Just as in the present theory, however, no attempt was made in
this investigation to account for blade stall in that part of the rotor
disk outside of the reversed-velocity region or for compressibility
effects on the blade sections. The results of the investigation are

reported herein.

A somevhat similar investigation was made at the Georgia Institute
of Technology under the sponsorship and with the financial assistance
of the NACA (reference 4). Both of the inveetigations made use of the
idea, first advanced in reference 4, that great simplifications could
be effected in the equations for rotor characteristics by representing
the angle of attack of a blade section by its sine. (This idea is
explained more fully in the section enmtitled "Basis of Analysis.") The
investigations differ, however, in many basic respects, some of major
and others of minor significance. The most important differences are
as follows: The analysis reported herein is based on the same reference
system of axes (that is, the axis of no feathering) as was used in
previous NACA works on rotating-wing-sircraft theory (see references 1
and 2); whereas the analysis of reference 4 is based on a system with the
axis perpendicular to the rotor tip-path plane. The present analysis
also makes use of the "energy" method of calculating rotor losses, a
method that readily lends itself to the construction of simplified
performance charts, such as those published 1n reference 3. The analysis
of reference 4 uses a "balance of force" method for calculating rotor
losses that entalls the calculation of the longitudinal component of
force in the tip-path plane (that is, the so-called "H" force). The two -
investigations also differ significantly in the manner in which the
reversed-velocity region is handled. It is expected that the analysis
presented in this paper will be most epplicable to aircraft having
rotors with flapping blades, whereas an analysis based on tip-path-plane
axes might be applied more conveniently to rigid-rotor aircraft.

SYMBOLS

Physical Quantities

b mummber of blades per rotor
R blade radius measured from center of rotation, feet
r radial distance to blade element, feet

X ratio of blade-element radius to rotor-blade radius (r/R)
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blade-section chord, feet

’ credr
equivalent blade chord (on thrust basis), feet 0

rotor solidity (bce/ﬁR)

blade-section pitch angle; angle between line of zero lift of
blade section and plane perpendicular to axis of no
feathering, radians

blade pitch angle at hub, radians

difference between hub and tip pitch angles; positive when
tip angle is larger, radians

mass moment of inertia of a blade about flapping hinge, slugs
per square foot -

mass constant of rotor blade; expresses ratio of air forces
to mass forces (cp&Rhlll)

mags density of ajr, slugs per cubic foot

Alr-Flow Parameters

true alrspeed of helicopter along flight path, feet per
second

rotor angular velocity, radlans per second

rotor angle of attack; angle between axis of no feathering
(that is, axis about which there 1s no cyclic-pitch change)
and plane perpendicular to flight path, positive when axis
is pointing rearward, degrees

induced inflow velocity at rotor (always positive), feet per
second

: V cos a
tip-speed ratio _
pepe ( QR )
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inflow ratio (M>
OR

blade azimuth angle measured from downwind position in
direction of rotation, radians

component at blade element of resultant velocity perpendicular
t0 blade-span axis and to axis of no feathering, feet per
second

nondimensional component of resultent velocity at blade
element (Up/OR)

A

component ét blade eiement of resultant velocity perpendicular
both to blade-span axis and Up, feet per second

nondimensional component of resultant velocity at blade
element (Up/R)

resultant velocity perpendicular to blade-span axis at blade )
element, feet per second ) )

nondimensional resultant velocity at blade element (UV@R)
inflow angle at blade element in plane perpendicular to blade-

-1 Up)
span axis, radians ({tan EE

blade-element le of attack, measured from line of zero 1ift,
radians (6 + @)

Aerodynamic Characteristics
section 1ift coefficient .
average section 1ift coefficient in reversed-velocity region

section profile-drag coefficient

average éection profile-drag coefficient in reversed-velocity
region
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80197550 coefficients iﬁ pover series expresging cdo as & function

v

of ap (Cdo =8y + By, + 62ar2)

a slope of curve of section 1lift coefficient against section
angle of attack (radian measure)

and K coefficients for use in profile-drag torque and power
AERS-V expressions

K3, .
L 1ift, pounds
T rotor thrust, pounds
Q ( rotor-shaft torque, pound-feet
P, rotor-shaft profile-drag power, pound-feet per second
Cp thrust coefficient —2—T—,§
®Rp(QR)
CQ | rotor-shaft torque coefficient -8 -
R2p(QR) 2R
i P
Cp rotor-shaft profile-drag power coefficiemt [— S
o ®2p(aR)3

B tip-loss factor; blade elements outboard of radius BR

are assumed to have profile drag but no 1ift

Rotor-Blade Motion

B .blade flapping éngle at particulér azimuth position measured

from plane perpendicular to axis of no feathering, radians

/

aq constant term in Fourler series that expresses 8 (radians);

hence, the rotor coning angle
an coefficient of cos n¥y i1n Fourler series that expresses B

by coefficient of sin n¥ in Fourier series that expresses B
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Subscripts:

i induced

o . ;rofile

g ‘ "forward-velocity" region

T reversed-velocity region (except in ar)
1 compbnent due to 1ift vector

a _ component due to drag vector

.T5R at 0.75 radius

std standard theory

ext extended theory

BASTIS (OF ANALYSIS

Although the general development of the thrust, torgue, and blade-
flapping equations that is given in the following section is similar to
that for the standard theory presented in references 1 and 2, the omis-
sion of the small-angle assumptions in the equatlons of this paper and
the consideration of higher tip-speed ratios result in differences
between the development of the two sets of equations. These ‘departures
from conventional rotor theory are now discussed.

(1) The elemental thrust at a blade section used in deriving the
thrust and thrust-moment equations is taken as the projection of the
elemental 1ift vector on the axis of no feathering instead of being
assumed equal to the elemental 1ift. The component of the profile-drag
vector in the thrust direction is also considered in calculating the
thrust and thrust moment in the reversed-velocity region. (As a result
of many sample computations, it was concluded that the profile-drag
component is negligible everyvwhere except in the reversed-velocity
region.) Similarly, exact components of the elemental 1ift and drag
vectors are used in deriving the torque equations. (See-fig. 1.)

(2) The resultant velocity U 1is used instead of Up in computing

the 1ift and drag at each element. (See fig. 1.) Radial (that is,
spanwise) components of velocities are ignored as usual, although such

N
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velocity components mey significantly affect the blade drag at extremely
high tip-speed ratios.

(3) When flight up to tip-speed ratios of 0.5 is comsidered, the
contributions of the reversed-velocity region become a significantly
large part of the total thrust, torque, and power produced by the rotor,
inasmuch as high inflow angles (and section angles of attack) are
usually present at the high tip-speed ratios that produce the relatively
large reversed-velocity areas. (This statement is principally true for
the helicopter power-on flight condition. For other flight conditiomns,
such as partial-power helicopter descents or autorotative operation at
high tip-speed ratlos, large reversed-velocity areas may exist with
small inflow angles.) The comtributidn of the reversed-velocity region
to the rotor characteristics is computed in the rotor theory of refer-
ences 1 and 2 by assuming that the blade sections in that regiomn, as
well as those in the forward-velocity part of the disk, remain unstalled
no matter how high the angles of attack encountered in that region may
be. Because the standard rotor theory is also based on the assumption
that the resultant velocity at a blade section can be represented by
the tangential component of veloclty Up, the assumption of no stall in
the reversed-velocilty region does not normally seriously overestimate
the thrust and accelerating torque, inasmuch as the overestimation of
the 1ift coefficient is somewhat compensated for by the underestimation
of the dynamic pressure at each blade section. The underestimation of
the decelerating torque and the profile-drag power is much more signif-
icant, however, because the effects of the two assumptions are additive
in those cases. When the normal component of velocity Up 1s included
in the resultant velocity at each section, as 1s done in this paper, and
when large areas of reversed veloclity and high section angles of attack
are present, the effect of the no-stall assumption results in further
errors because the thrust and accelerating torque contributions are
greatly overestimated, and the decelerating torque and profile-drag
power contributions to the total thrust, torque, and power are
underestimated.

These effects were investigaeted for a sample practical operating
condition (u = 0.k, Cp = 0.00362, 6y = 24°, 6; = -12°) by numerical

step-by-step calculations. The results showed that the thrust produced
by the reversed-velocity region, calculated on the basis of unstalled
flow and with Up considered in the section resultant velocity, is
about 23 percent of that produced by the rest of the disk, whereas the
contribution is only 8 percent when calculated on the basis of stalled
flow. For the same sample case, the profile-drag power contribution of
the reversed-velocity region is 18 percent of that produced by the rest
of the disk when calculated by means of the no-stall assumption, whereas
this contribution is 51 percent when calculated with stall considered.
In addition to 1llustrating the errors that could be introduced by not
considering the effects of stall in the reversed-velocity region at high
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speeds, these data point up the fact that the conmtributions of the
reversed-veloclty region can be quite significant.

In order to account for the stalled flow in the reversed-velocity
region in a relatively simple manner, advantage ie taken of the fact
that the average section angle of attack in this region for most tip-
speed ratios and power-on flight conditions is extremely and uniformly
high. (For these conditions, a typical value of section angle of attack
is 60°.) The section 1lift and drag coefficients in this region are
therefore assumed to be constant. The trust, torque, and power equations
are then developed by first calculating the contributions of the
"forward-velocity" region (that is, the area outside the reversed-
velocity region) and then algebraically adding to them the contributions
of the reversed-velocity reglon computed on the basis of constant 1ift
and drag coefficients.

Calculation of rotor characteristics in the reversed-velocity
region requires certain further assumptions of a semiempirical nature
even though such assumptions are not necessary for the forward-veloclty
region. The approximations used in the reversed-velocity region are
pointed out as they arise in the develomment of the analysis and are
subsequently shown to be satisfactory over a wide range of operating
conditions. N

(4) Preliminary investigations of the problem of computing rotor
characteristics without making the usual small-angle assumptions for 6
and ¢ showed that the resulting equations for rotor thrust, torque,
and blade flapping motion are too unwieldy for analytic solution. In
order to make the equations amensble to practical solution, advantage
is taken of the fact that, although the pitch angle or the section
inflow angle separately may be too large for the .small-angle assumptions
to apply, their sum may not be if the rotor is to operate with the
significant elements not highly stalled. It is therefore permissible
to use @, and sin ap. interchangeebly. (Even at ap = 200, the
error due to this assumption is only about 2 percent.) In practice
the substitution of sin a,. for a,. 1in the expressions for the 1ift
and drag coefficient of a blade element makes it possible to develop-
the equations for rotor forces without the previously adopted restric-
tions of 6 and @ +to small angles.

The analysis given in the following section is developed, as are
those given in references 1 and 2, for linearly twisted, rectangular
blades with the flapping hinge located on the rotor center and perpen-
dicular to the rotor axis and to the blade span. - All velocities, forces,
and moments are referred to the axis of no feathering. An explanastion
of this system of axes, together with means for applying the equations
based on this system to pure feathering or combination flapping-
feathering systems, is given in reference 5.
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ANATYSIS

Thrust.- From reference 1, the velocity components at a rotor
blade element may be expressed nondimensionally as

Up = 7= =X+ } sin ¥ (1)

Bl 5

,_UC‘.

1 1 1 ,
uP=ﬁ=x+§pal+ <-uao +xbl+—2-ua2)cosqx+ (-xal+§ub2)sinq:+

<% Ha| + 2xb2) cos 2¥ + (% by - 2xa.2) sin 2y (2)

and

e 2)1/2 (3)

Also, from figure 1,

Up = U cos ]

or T ()
gT=ucos¢ J
Up = U sin § ]

or [ (5)
up = u sin @ J

Agaln, from figure 1, the rotor thrust at a blade element with the
drag component neglected is found to be
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dT = 4L cos @ (6)

where, from simple blade-element theory,
dL = ¢, =pU% dr
15 (7)

On the assumption that
o, = sin a, (8)

and that the lift-curve slope is constant, c; may be expressed as

c,=asina, =a sin(eo + X6 + ¢) (9)

If equation (9) is expanded by the standard trigonometric identities,
and the result combined with equations (4) to (7), then

ac[iain 6o cos x64 + cos 6, sin xﬂl)UT2 +

HE
I
l'\)_él—-'

(cos 6o cos x8; - sin 6, sin xel)U;I.UIE' (10)

The total thrust produced over the "forward-velocity" region (that
is, that part of the rotor disk over which the flow is not reversed) by
a rotor of b blades is

R sin
f~2ﬂffﬁ—udw-—Ffu wd—Tdrd\V (11)

Before equation (10) is substituted into equation (11) and the
indicated integrations are performed, it was found desirable first to
expand cos x67 &and sin x0; by the following terms of the power
series: i
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’ cos x8 =1 - (XZ%)e + (xi})h W
X 5 r (12)
sin x6; = (xﬂl) (xg}) + ﬁxel)

The series expansion was used in the integration instead of exactly
integrating the terms containing cos x6, and sin x67 1n order to

avoid a discomtinuous result in the integrated answer at 91 0 and

to avoid the necessity of having to use a very large number of signif-

icant figures in obtaining a numberical value of the thrust for small
values of 6;.

Substituting equations (1), (2), (10), and (12) into equation (11)
and integrating on the basis that the chord c¢ 'is constant gives an
expression for the thrust produced by the forward-velocity region. The
expression can be made nondimensional by substituting into it the expres-
sions for Cp and o that are listed in the section entitled "Symbols."

When these substitutions are made, the final expression becomes, after
simplification,

2C 3 3 5 3
T\ _ B oB 2 3 B 1 3 o[B 2 B
('o?)i,‘sineo[?‘J'” 579" '91(*'"3 *‘9::”)"91 (10“‘ 12>+

B 7 2
913x 3O+91h’%—8:|+cos eo[x%-+u2b2%+p2%+u —6.+

b > b 6 ok
el(?ﬂ- — ‘Bir - %E) + 6, (”15‘ -2 %—) - 613(1-3—6- + IES) (13)

The simplifications expressed in equation (13) were made by neglecting
all terms in K of higher order than the fourth and by omitting all
terms that contributed but negligibly to the final result; the latter
terms being determined from numericsl examples representing extreme
flight conditions. These same simplifications were also made in the
final expression for the flapping, rotor torque, and rotor profile-
drag power coefficients which are subsequently developed.

The thrust produced by the 1ift vectors in the reversed-velocity
region TrZ is calculated on the basis that the 1ift coefficient remalns
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constant, so that

-HRsiny
Tr, = %p ¢ U[Q dw\jﬁ U2cos § dr (1%)

Inasmuch as exact evaluation of the last integral in equation (14) is
not feasible, an approximation of the U2 cos ¢ term by an expression
that 1s readily integrated is necessary. The semiempirical relation-
ships employed are as follows:

UPeos $ = UpU = UT(U - g;)
Ug l:p.l(l - %)QR + —UéTZl (15)

In the preceeding equation, Up 18 replaced by the expression

i

Up = ugoR = x(l - %)QR (16)

which is based on the assumption that UP varies linearly from a value

of A at the blade root to zero at the blade tip. The same expression
for Up 1is also used in deriving the reversed-veloclty contributions

to the rotor torgue and power. The bracketed expression in equation (15)
is made a positive quantity by placing absolute bars gbout A, Ilnasmuch
as the expression replaces the resultant velocity U, which is always
positive.

Evaluating equation (14) with the aid of equation (15) and making
the answer nondimensional gives the expression for the reversed-velocity

thrust as
QCT EZ 1 3
(2 -2pent-y -8 an

It should be noted that <C; 1is positive when A is positive, and
negative when A is negative, inasmich as the reversed-velocity
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thrust acts upward in normal power-off flight and downward in power-on
flight.

As mentloned in the previous section, the contribution of the
profile drag to the total thrust is negligible in the forward-velocity
region. In the region of reversed flow, however, the profile-drag
contribution Trd becomes significant because of large inflow angles

and high profile-drag values resulting from the stalled flow and is
given by the following expression:

. ' 7 -uRsiny
N SO |
Trq = b 5T By | dw‘/; UPsin § dr (18)

The use of the same assumptions employed for equation (15) yields

UPsin § = UU = MlR(l - %)(UP - E)

P 2

N I

Substituting equation (19) into (18), integrating, and meking the result
nondimensional gives the following expression

&, ey w

The total rotor thrust coefficient can then be obtained as the sum
of equations (13), (17), and (20); thus,

g _ <_2°_T> R (ﬂ) . (ﬁ> (21)
ga oa £ ga rz oca rd

Blade motion.- The motion of a flapping blade can be described by
a Fourier series that expresses the relation between the flapping
angle P and the blade azimuth angle V. To a degree of accuracy
sufficient for most purposes, the series can be written as

14
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B = &y - 8 COB ¥ - bl gin ¥ - as CO8 2y - bosin 2V (22)

Equations for determining the five unknown coefficients in equation (22)
are obtained by equating the sum of the blade thrust, centrifugal force,
and inertla moments about the blade-flapping hinge to zero.

The thrust moment at any value of V may be written as

21

BR uRsin‘lI
Ml‘ —ch2ch dr = — 1 dr - f = r dr +
RsinV
J\_u _pc[ U2cos ¢ + Ed UPsin Q—i-lr ar{ . (23)
0 b1
2%
where the notation is used to indlicate that the expression enters
1t

into the thrust moment only in the Interval between V¥ = x and V¥ = 2xn.
The elemental thrust moment dTr can be obtained by simply multiplying
equation (10) by r. The last integral in equation (23), which repre-
sents the moments contributed by the 1ift and profile-drag components

in the reversed-velocity region, can be evaluated by means of equa-
tions (15) and (19). (As in equation (17), the sign of €; is dependent
upon the sign of \.)

Evaluating equation (23) and following the method used in refer-
ence 1 results in the following five simultaneous eguations for use in
determining the five flapping coefficients:

v GB3A.+12b 2 + 0.0398M:3 + 0.03 Ly 135+1 233)-9125).-91337)+
"o 7Y o M T T O B AT el A2 CHY B a0
b g2 B 6126 gk 6,3 (56 0,4(.8
Bineo@w%" gx:““"l(*r*si*“h)'%(%*%“%*%(%‘X)*%(%ﬂ*

1'2}83 nhe, + élxlu@( - %)Eado + -—L p3il (1 - )a 00152 A.(l - %)ui% (24)
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0 = sin 90|:§ uB3 + 0.0265 % - el<ux 5 -

2 7
4 _ %2 o5) o o3(2B
0.0265M1 > 7(5 KB > 917\

2 2

8 -
L 5
B B

B3

15

3 2
4 }J-BB.Q 91 B5
005085 - — 'T( 5
3
e B -

5 2
B V] 3 B L
al?+ﬁalB -g‘sz -

N

2 .5

L"a.B

- L +coseou§Be-
120 2

2
- L oan _im3+el<uﬁ>_iém%

w3l

1T 8 6 32
a.lB6 o g} 63 upb\ o1
6 THFTig) T \3 )T\
2 ¢y
2 81 o 1
0.2123\ M| 1 (1 - §> 2 -

8 —
B
1 >j| - 0.01325u 52
8 a

u\y

(25)

(26)
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2
_7 122 1 Bt B2\ 611 o
ae—a Bineo—EleB +BE“ -91<H31—E-+2b2—5—>+—2—§ﬂ-213 +

3 Bhb 2
cos GOE‘%— a; + 22 + 0.0265N13 + O.Ol50a1uh + 91 (— %— B3> -

2—
cqg +
) &,

nIF

9,5/ 55 86 1k 1 2

-026 z : g
0:0265 3 | (1 B} %)Cz + 201387 x<1 - %)p.Bcdo (27)

2 3 y
=7 l 2, B KB B 1 4
b —g COSQO-]J&OT+Tb1-a2-é—+'J—-€8.2U- +

6.2/ 5 6 , 3 4
1 [uB B 2 B B 2
_.2__(? by - CIN ..3...) -~ sin 90 91(-p. ag e + lJ.b1 Tl- -5 &235) (28)

Accelerating torque.- As was done in reference 2, the torque arising
from the inclination of the 1ift vectors relative to the plane perpen-
dicular to the axis of no feathering is called the "accelerating” torque
in the present baper, even though such torque tends to accelerste the
rotor only in the case of power-off operation.

The differential expression for the accelerating torque (see fig. 1)
mey be written as

a
_% = %pUgcz sin @ cr ar (29)
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which, after substitution from equations (4), (5), and (9), becomes

“
dr

NS

ac Ein(eo + Glx)UPUT + cos(eo + Glx)Uszlr (30)

The accelerating torque produced by the forward velocity region is
then .

\

in -HRsiny in
Qpp = o= " av = & - 55 " o ar  (31)

Evaluating equation (31) with the aid of equations (1), (2), (12),
and (30), and nondimensionalizing and simplifying the result gives the
following expression

2C 6 5
Q1 A 3.1 2 1 (AB 1 3
(o_a>f=81n90[3-:3 b2B (—5—>+§-1—r}l).+
3 35 0,87
618 61 14 1 P
Cl<- 3 + 30 )-!'Cg( T B> + C3(~ —5— + Co8 9 91(1[—_ B +

8,3 2 b 3
1 1°(N 6 B 2 B B
'1—2'}12b2B3> - T(gB) +Cl(? - el ‘g‘) + C (3)+ -

03(% - 9,2 %g) - -é—(i nB2 4 3y 38.1)\.)] (32)

where
Cq = xg + ualx + % |.12a02 + % u2a12 + % u2b12 - % u2a0a2 (33)
Cp = -Haghy + 5 beybp = 3 Hbjap (34)

e e e ———————— e i - - —
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2 2 2
by + 28,% + 2by (35)

Q
w

1]
MO
Y

+
=

The acceleratling torque produced by the reversed-velocity region is

T HRsiny
b 1 U —
Qir/: _27[ f d\lf jo\ _92 cU<sin ¢Czr dr (36)

The approximstion is mede that U-sin @ = Up®. Using the value of Up

as given by equation (16), substituting into equation (36), integrating
and nondimensionalizing the answer yields the following expression for
the accelerating torque in the reversed-velocity region

ec 3 2
( Qi> = - L2 (1 - E) (37)
oa r 8a 2
The total accelerating torque is then the sum of equations (32)
and (37)
ECQi B ECQi . ECQi (38)
ga  \ oa 7 oa /.

Decelerating torque.- The decelerating or profile-drag torgue pro-
duced by b blade elements (see fig. 1) is

dQ, = bcd0 %checos g rdr (39)

where, as in reference 2, Cq_  1s expressed as
o]

cq, = By + Byay + By (ko)
/
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When equation (39) is expanded with the aid of equatioms (%), (5), (9),
and (40), the following expression is obtained:

dQ. = Epbc d 5 U + 84| sinf6n + 0,x)Un2 + 6n + 6-%)U
o = 3P 0 cos 1i°® ( Y 1 )UT COB( Y 1 ) pUr

8y Eine(eo + elx)urz + cos"—’(eo + 91x>UP2 +

Uplp sin 2(60 + Glgﬂ cos fpr dr A (%1)

Although the assumption that o, = sin o, was successful in

eliminating terms involving sin § and cos § from the integral
equatlions for thrust, thrust moment, and accelerating torque, cos )]
terms still remain in equation (4%1). As will be shown in the succeeding
section entitled "Discussion,” a subsequent investigation showed that
cos § could be assumed equal to unity in equation (41) with small error
in the final answer for Q, in most cases, even in the most extreme
operating conditions when ¢ 1s very large. The validity of such an
assumption is aided by the fact that, in the normel operating angle-of-
attack range, the &, and O, terms are of the same order of magnitude.
Since cos § appears in the denominator of the 8o term and in the
numerator of the 3, term, the effects of cos ¢ “tend to cancel each
other.

The decelerating torque contributed by the forward veloclty region,
as represented by the nondimensional coefficient, is

o T 1.0 dC T -usiny 4c
% = L ay % ax - 2 ay __92 ax (L42)
g £ 21 o) 0 dx 21 T o} dx

Substituting equations (1), (2), (12), and the nondimensional form of
equation (41) into equation (42) and integrating results in the

=8
following expression for < o ) :
T




1 1 1 1 1 1 1

-

1 1 K33 ult 1 1L
g Kpg §-K18> -0y 5> - K g+t Krgn uih + Kg g W > (43)

where Cj, Co, and Cs; are as defined in formulas (33) to (35) and
1, Co 3

_1 22 3 3 1l 4 2
Ch_-ﬂp.x +-éualx+l6p.ao (L)
- 2
K) = 8 + 8y sin 0, + By sin9y (45)
K7=51 cos 8 + B, sin 20g ’ (46)
J

Ky = (-8, sin 6 + 285 cos 260)6; (¥7)
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= (-L5, cos 6, - 25, sin 26.)6-2

Kg = {-581 0 o 8in 204)6;
K

1 L
o= (3 81 sin 6p - 3 8 cos 290)913

1 2 L
K]J. = (EE 81 cos8 90 + g 82 sin 290> 61

Kp = K70,
X3 = 3 Xgoy
K, = 5 Koo
K5 = % K1081
K¢ = %-Kllel
Kyp = (- o5 81 8in 6, + %% 8o cos 290)915

2
Kl3 = 82 cos 90

2
K15 = ~82 cos 26061

(48)

(49)

(50)

(51)

(52)

(53)

(5k)

(55)

(56)

(57)

(58)

(59)

21
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K16 = % 8, sin 20,0;3 (60)
K)o = %- 5, cos 2000 " (61)
Kg = - 1% 8, 8in 20467° (62)

It should be noted that the K constants defined by the preceding
equations are functions only of the pltch angle, blade twlst, and the
section drag characteristics.

The decelerating torque coefficient for the reversed-velocity
region is

o pReiny .
(Q)_ = %J; dx]rj;- %pbcEdoUecos g rdr (63)

If the value of Ulcos ¢ as given by equation (15) is substituted into
equation (63), made nondimensional, and then integrated, the result is

20 3 i
< UQo>r _ _Edol:g—j;l_}\.l(l D 1%%;[ (6%)

The resultant decelerating torque contribution is obtained as the
sum of equations (43) and (64):

e, [ 2
7 " \o %), * ECQO>r (65)

Profile-drag power.- The differential expression for the profile-
drag power can be written as

dP, = b -]é'-pccdoUsdr (66)
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Expanding equation (66) with the aid of equations (3), (&), (5), (9),
and (40), and expressing the results in nondimensional form, gives

TuTe

2, ,2 " ;
ac 8061.1. + uP)cos 3 + 5 c052¢ Up cos (60 + elx) +

Hd
il
nja

(U“I'3 + uP2uT) sin(eo + Glx 82 C—OU;IIT uP2c082(60 + Glx) +

| S——

3 2
2

A8 In equation (L4l), it was found that the omission of the cos ) terms
in equation (67) results in an error of but a few percent in the final
ansver.

The total profile-drag power comtributed by the foward-velocity
region can be written as

ac
x 1 *p T -usin¥y acp
2 1 o] 1 0
= = = avy dx - = —= dx 6
(U CPO)f an ,/;2 J; dx 2T Jx W L dx (69)
1

After substitution, integration, and simplification, the final expres-

sion for <g Cp ) becomes:
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) onfy o148 onlt o) ol )
1 1 2 1 3 o 3 y 1 1
K5(§+E“>+K6(9+T’Iu)+6hl{l“ +(X 2|J.13.:|_)(3K7+
1 1 1 1 . 1 1
EK8+5K9+3K10+7K11+§K12>*(‘2'“9‘*+gu3al)(‘<7+

1 1 1 2 1
K8+—-K9+EK10+-§K11+-6—K12>--9—T[U- 7-51:“-1‘7\-}(8*

1 1 1 1 1 1
(gugbe’*'E“3%b1>(K19+§K20+§K21+1;K22+5K23+

1 1 1 1 1 3
§K20+EK21+5K22+€K23+7K2u> * ('“aobl+§“alb2 -

3 1 1
E”blae)%Kw+EK~20+5K21+!6‘K22+%K23,+%K21+> +
1

1 2 1 2 2\ (1 1 1

i+ ) ¢ (B35 B+ )

Keo(';—n ”3*2> (69)
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vhere K; to K;g are expressed by equations (45) to (62) and .

Kig = By + 8; sin 8, + b, cos“8,, (70)
Koo = (81 cos 6 - By sin 200)6; (71)
Koy = <—- % 8) sin 64 - B, cos 260> 912 (72)
(.14 6 + 2 B, 8in 20,)6,3 (73)
Kop = |- g 81 co86p + 308 081
Kp3 = <§lE 81 sin 6 + %- 8, cos 2eo>ell‘ (74)
Ky, = (ﬁlo' 8) cos 0, - 1 Bp sin 2eo>el5 (75)

The profile-drag power for the reversed-velocity region is

. 7 pRsiny
_ 1 1o .= 3
(Po)r = 3z f dll!'/c.I 2p‘bc:cdoU dr (76)

The variable part of the integral in equation (76) can be handled as
follows:

w3 - (UTQ N UP2>U o~ (ul,z + UPE)[UT - %le QR(l - —Z—ﬂ (17)

Substituting the value for Up obtained from equation (16) into
equation (77), substituting the result into equation (76), imtegrating,
and nondimensionaslilzing permits the power loss in the reversed-velocity
region to be expressed by

oc
P 3 2
o] _= |3 4 p\p= 1 o2 N
. <o>r-°ao[31:“ +'“(1“§)9n+8“(1'2) *

. 132 >~L(1 - g)?’] (78)




26 NACA TN 2665

The total profile-drag power coefficient is then determined as the
sum of equations (69) and (78):

2 2 2
o),

DISCUSSION

Check of simplifications and assumptions.- A number of assumptlons
and simplifications (among which are the assumption that section 1ift
and drag coefficients in the reversed-velocity region could be repre-
sented by uniform stalled values, the simplifications used in the
reversed-veloclty region, and the neglect of some cos ¢ terms in the
profile-drag torque and power equations) have been made in deriving the
rotor equations.

In order to determine the effect of these approximations on the
accuracy of the theory derived in this paper, rotor characteristics
for a number of different flight conditions were calculated by the
theoretical equations, and the answers have been compared with those
obtained by a step-by-step integration performed on automatic computing
machines. The step-by-step method eliminated all small-angle assump-
tions and the assumptlion that the resultant velocity at the blade
element U (without the radial component of flow) could be replaced by
the tangential component Up. The method also permitted section stall
in the reversed-veloclty region to be considered, although stall was
not considered by either method in the forward-velocity region. The
same 1lift and drag curves were used by both methods in the forward-
velocity region and were represented by

cy = 2-T3ap
(80)
g, = 0.0087 - 0.0216a,. + 0.400a,2
In the reversed-velocilty region, the analytical method assumed that
EZ = lo2
(81)
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whereas the step-by-step method utilized the 1ift and drag Qurves shown
in figure 2. The curves in figure 2 are arbitrary and were devised to
similate, in an approximete manner, the characteristics of an airfoil
section up to high angles of attack.

The ratios of values of thrust, accelerating torque, decelerating
torque, and power obtained by the two methods are plotted against the
inflow angle @ at the tip of the advancing blade (fig. 3). The values
of rotor angle of attack, tip-speed and inflow ratios, and blade pitch
and twist angles corresponding to each of the flight conditions are also
indicated in the figure. It can be seen that good agreement exists
between the extended theory and step-by-step methods of computing rotor
characteristics throughout the range of inflow angles investigated.

(The highest values of inflow angles covered correspond to operation at
tip-speed ratios of 0.5 or to operation at large rotor angles of attack
such as might occur at steep climb angles. Tbe theory is expected to be
applicable for any value of ¢ encountered in helicopter or convertible-
aircraft flight.) It may therefore be concluded that the assumptions

and approximstions used In deriving the present theory are Jjustified by
the simplifications of the relationships they permit and by the good
agreement of the results of the theory with those obtained by an exact
step-by-~step analysis.

Comparison between standard and extended theories.- Essentially,
the difference between the standard and extended theories lies in the
fact that the extended theory omits the small-angle assumptions in the
forward- end reversed-veloclty regions and takes stall and the profile-
drag contribution to the thrust into account in the reversed-velocity
area. For relatively low-speed and cruising level flight, or at modersate
rates of climb and descent, the two theories should give substantially
the same resulis, whereas in high-speed flight or at large angles of
climb or descent different results would be expected. It is of interest
to determine the range of flight conditions at which the two theories
begin to diverge, and also the maximum extent to which the differences
in small-angle and reversed-velocity assumptions affect the rotor
equations.

A comparilson of the thrust equation as herein developed with that
given by the standard theory in reference 1 reveals that, aside from
differences in the reversed-veloclty terms, the removel of the small-
angle assumption resulted in the replacing of 6 by s8in & 1in the
equation and in modifying all other terms by cos 6. For a constant
forward speed (or constant W) condition, therefore, the blade pitch
angle 6 lends itself for use as a convenient parameter by which the
two theories can be compared.

In order to illustrate the comparison with a sample case, calcula-
tions by both theories of thrust, accelerating and decelerating torques,
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and profile-drag power of & sample rotor having blades with -8° twist
are plotted in figure 4. The results, which are presented in each
figure in the form of ratios of values as computed by the two theories,
are plotted against the three-quarter-radius pitch angle. (The accel-
erating torque curves of figure 4 are plotted in the form of absolute
values, rather than ratios, because in the region of low or zero torque
the ratios would become meaningless.) The maximum values of 9.75R

shown on the plots would be about the maximum values that might be
expected in normal helicopter operation. Very much larger angles might
possibly be employed in the rotors of certain types of convertible air-
craft with rotors which are also used as propellers. In such cases,

low values of p may be combined with very high values of 6. Curves
are shown for three values of tip-speed ratio (0.1, 0.3, and 0.5) and
for two values of 2Cp/oa (0.03 and 0.01). The higher value of 2Cp/ca

represents an upper limit from the standpoint of rotor stall at the
higher tip-speed ratios, whereas the lower value represents the value
near which most high-speed helicopters will tend to operate.

A study of the plots of figure 4 indicates that the two theories
give essentially the same answers (within 10 percent) at low values
of U over the range of 9.753 values shown. If curves for the low

values of | were extrapolated to higher 6.75R values, significant

differences could be seen to occur at those pitch values at which the
rotors of certain types of convertible aircraft might be expected to
operate. At high values of WK, the two theories differ by very large
amounts, the differences varying merkedly with 6. Thus the extended
theory would seem to be more applicable than the standard theory for
calculating the performance of rotors operating in the power-on condi-
tion at very large angles of attack or at tip-speed ratios exceeding
approximately 0.25.

Tt might be pointed out that the thrust equation (equation (13))
is particularly sensitive to the effects of 6 in that small errors
arising from the replacement of sin 6 by 6 and cos 6 by 1 are
magnified in the equation because the sin 8§ and cos & +terms are of
approximately equal magnitudes. For the power-on case, the two sets of
terms are subtracted from one another, and the answer, being a small
difference between two large numbers, can be very much in error.

Selection of average lift and drag coefficlents in reversed-velocity
region.- As previously pointed out, it is possible, in autorotation for
example, for large reversed-velocity regions to exist in which the mean
angle of attack is quite small as compared with the high, usually
stalled, values in the power-on condition. The proper choice of the
average lift and drag coefficient values to be used in calculating the
reversed~vélocity region would therefore depend on the flight condition.
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For most power-on flight conditions, the numerical calculations dis-
cussed in this section indicate the following values to be satisfactory:
EZ = 1.2; Edo = 1.1. For the autorotative flight condition, values

of C; and an in the neighborhood of 0.5 and 0.1, respectively, seem

to be reasonsble. For other flight conditions, other values of ¢, and
Ed might be more appropriate.
0

LIMITATIONS OF THEORY

As stated in the preceding section, the extended theory of this
paper is expected to be applicable for any range of inflow angles
encountered in helicopter or convertible-aircraft flight. Also polnted
out was the fact that the semiempirical approximations used in handling
the reversed-velocity region were satisfactory over the wide range of
flight conditions that were investigated numerically, which included
tip-speed ratios up to 0.5. Although the numerical check of the theory
tends to inspire confidence in its application to somewhat greater values
of K, the use of the reversed-velocity region approximations, as exem-
plified by equations (15), (16), and (T77), and the omission of the radial
velocity component, probably will result in a loss in accuracy of the
theory at the higher tip-speed ratios, particularly in the calculation of
the rotor profile-drag torque and profile-drag power. It 1s difficult,
in fact, to evaluate accurately by analytical means the degree of error
in estimating the rotor drag brought sbout by ignoring the radial-velocity
components of the resultamt velocities at each of the blade elements at
any tip-speed ratio.

The possible reduction in accuracy at tip-speed ratios much beyond
0.5 does not place a significant limitation on the theory, inasmuch as
rotors operating at the very high values of B will necessarily be
lightly loaded, at which condition the relative importance of the profile-
drag terms becomes less as compared with the other power absorbing items,
such as parasite and possibly auxiliary-wing drag. If a relatively high
degree of accuracy is desired at the higher values, the errors introduced
into the theory by the approximations and omissions should be analytically
or experimentally investigated.

Inasmuch as blade stall was considered specifically only in the
reversed-velocity region, the extended theory, Jjust as standard rotor
theory, is limited to conditions of operation wherein excessive stall
does not exist outside the reversed-velocity boundary. The effects of
moderate amounts of stall on profile-drag power may be estimated by the
method suggested in reference 6. Blade stall limitations, which have




30 : NACA TN 2665

been shown to occur simultaneously with conditions of optimum perform-
eance in reference 6, may be estimated by the methods given in refer-~
ences 2 and 3 for the -standard rotor theory.

Limited experimental tests and calculations indicate that compres-
8ibility effects on rotors operating at high tip speeds may substantially
alter the aerodynamic characteristics of the rotor, the primary effect
being an increase in profile-drag power. The theory of this paper does
not account for these losses because of the added complexity involved and
the lack of suitable airfoil data at high Mach numbers and high angles
of attack. When such section data, as well as more extensive experi-
mental rotor data, do become available, it is expected that compres-
sibility power losses may be accounted for in a manner similar to that
used for stall effects.

Since some high-speed helicopters and convertible aircraft will
probably be operating at relatively high disk loading and torque values,
an investigation of the effect on the equations of the approximation of
tip losses by a constant tip-loss factor B and of the ommission of a
rotational-inflow factor was considered advisable. Therefore a compari-
son was made of the results of the extended theory, modified for the
vertical-flight condition, with those of the Goldstein propeller theory,
for a few different verticael-flight conditions. The cases investigated
included conditions of relatively high inflow, torque, and disk loading,
as might be encountered by rotors used in certain types of convertible
aircraft, as well as more conventional helicopter loadings. The com-
parison indicated that, at least for the vertical-flight condition, the
use of the widely used constant tip-loss factor B = 0.97 yielded
answers for rotor characteristics that are in close -agreement with those
given by the more exact Goldstein propeller theory. A similar check for
the forward flight condition could not be made because of the lack of a
rigorous method of calculating tip losses in that condition. The ques-
tion becomes much less important in high-speed flight, however, inasmuch
as induced losses are comparatively low at high speeds.

APPLICATION OF THEORY

The equations of blade flapping, thrust, torque, and profile-drag-
power were developed in terms of the three fundamental variables;
namely, A, 6, and p. Different combinations of these varisbles may
be inserted into the equations in order to obtain the characteristics
of rotors in different flight conditions. Inasmuch as the equations are
lengthy when applied to twisted blades, if a large number of different
rotors or flight conditions are to be investigated, the equations can be
used to prepare charts (similar to those given in reference 3) from which
the rotor characteristics can be obtained directly.

Although the equations of this paper were developed for rectangular
blades, experience (obtained with the theory of reference 2, which was
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also developed for comstant-chord blades) has shown that such equations
may be applied successfully to blades of conventional tapered plan form
by the use of an equivalent chord c

CONCLUDING REMARKS

An extension of rotor theory has been presemted to obtain analytical
expressions for rotor flapping coefficients, thrust, torque, and profile-
drag power that are not limited by the small-angle assumptions for blade
pitch and inflow angles used in standard rotor theory. In addition,
because the contribution of the reversed-velocity region becomes signif-
icantly large in high-speed rotor flight, it was necessary in the deriva-
tion to account for blade stall in this region. The equations are
therefore expected to be applicable to high-speed helicopters and to
certain types of convertible aircraft. Just as in standard rotor theory,
the equations are limited to conditions of moderate amounts of stall on
the blade sections outside of the reversed-velocity region and do not
include Mach number effects.

A comparison of the equations of the extended theory wilth those of
the standard rotor theory indicates that the extended theory should be
used in predicting the characteristics of rotors operating in the power-
on condition at very high angles of attack or at tip-speed ratios
exceeding spproximately 0.25.

Langley Aeronsutical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., December L4, 1951

e Tor calculating the solidity ratio.
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Figure 2.- Lift and drag curves used in numerical evaluation of reversed-
velocity region.
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